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Abstract 
Lung cancer remains a significant global health 

concern, posing a substantial burden on both patients 

and healthcare systems. As a result, there is an urgent 

need for innovative therapeutic interventions to 

manage lung cancer more effectively. In this study, we 

developed classification models using machine 

learning algorithms to predict drug responses in lung 

cancer cell lines. A diverse dataset was retrieved, 

consisting of 692 active and 1,071 inactive compounds 

tested against five major lung cancer cell lines: CaLu-

06, HCC-78, NCI-H322, NCI-H358 and NCI-H522. 

Drug-like properties of these compounds were 

generated and employed as descriptors for model 

development.  

 

The proposed method utilised techniques such as z-

score, correlation analysis, recursive feature 

elimination with cross-validation and SMOTE to pre-

process the data and identify key features. Further, 

hyperparameter optimisation was conducted using 

Optuna to fine-tune model parameters and enhance 

performance. The results revealed that Random Forest 

reached an accuracy of 0.80 and an AUC of 0.85. This 

positions it as the best model, with significant 

implications for drug discovery and personalised lung 

cancer therapies. The implementation materials 

alongside python code are accessible freely at 

https://github.com/Gokulakrish13/Machine-Learning-

Classifiers-for-Predicting-Active Molecules-Against-

Lung-Cancer-Cells.git. 
 

Keywords: Lung cancer, Drug Response, GDSC, Cell lines, 

Machine Learning Models. 

 

Introduction 
Lung cancer (LC), characterised by a poor overall 5-year 

survival rate, is one of the leading causes of cancer-related 

deaths globally.8 Despite extensive efforts to develop 

enhanced therapeutic strategies including chemotherapies, 

targeted therapies and immunotherapies, only modest 

survival rates and clinical outcomes have been observed.17,19 
Moreover, the drug resistance associated with existing 

molecules further worsens the situation, clearly highlighting 

the necessity for novel therapeutics. Interestingly, lung 

cancer treatment could be significantly improved by 

exploring new and innovative sources of bioactive 

compounds. These naturally occurring molecules have the 

potential to act as anti-cancer agents, offering a promising 

avenue for more effective therapies. 

 

In recent years, phenotypic-based drug screening has 

garnered significant attention due to the substantial number 

of drugs identified and approved through this approach. 

However, its application is often associated with 

disadvantages such as high costs, low throughputs and 

challenges in optimizing emerging hit compounds.18 To 

address these limitations, machine learning (ML) and deep 

learning models are increasingly used to exploit phenotypic-

based data, often in conjunction with molecular structures or 

multiomics knowledge. This integration enhances the 

accuracy of modern translational precision medicine.12 For 

instance, Wu et al19 developed a user-friendly web server 

called DeepCancerMap to accelerate the discovery of 

anticancer drugs.  

 

In another study, Qin et al12 created an MLP-based 

regression model to predict the bioactivity of compounds 

targeting the Erα protein, demonstrating efficacy with a loss 

value of 0.0146, highlighting its potential for screening 

active compounds for breast cancer management. Similarly, 

Bonanni et al2 constructed several machine learning models 

using compounds with highly consistent cell-based 

antiproliferative assay data to predict ligand activity for the 

PC-3 and DU-145 prostate cancer cell lines. Additionally, 

He et al7 developed predictive models using fingerprints and 

molecular descriptors for 13 different breast cancer cell 

lines, showcasing the potential of these techniques in 

enhancing cancer therapy.  

 

Although the reported computational models have provided 

valuable insights into the discovery of anticancer agents, 

machine learning models employing drug-like descriptors 

remain elusive. Note that drug-like properties are crucial in 

the development of machine learning models for drug 

discovery and response prediction.3 Specifically, studies 

have shown that incorporating ADME (Absorption, 

Distribution, Metabolism and Excretion) data into predictive 

models can significantly improve the accuracy of drug 

response predictions.9  Addressing this gap, the present study 

focuses on extensively training machine learning models 

using data from the Genomics of Drug Sensitivity in Cancer 

(GDSC) database. This approach aims to predict the 
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antiproliferative cellular activity of compounds specifically 

against aggressive lung cancer cell lines including CaLu-06, 

HCC-78, NCI-H322, NCI-H358 and NCI-H522.  

 

By leveraging the extensive genomic and pharmacological 

data available in GDSC, the study seeks to enhance the 

precision and efficacy of drug response predictions, 

ultimately contributing to the development of more effective 

therapeutic strategies for lung cancer. 

 

Material and Methods 
Dataset preparation and descriptor generation: Initially, 

the IC50 values for anti-cancer drugs against five lung cancer 

cell lines: CaLu-06, HCC-78, NCI-H322, NCI-H358 and 

NCI-H522, were obtained from the GDSC database.5 

Consequently, we processed the acquired data using the 

following steps: (1) Only compounds with reported IC50 

values were kept and those lacking bioactivity data were 

discarded; (2) The bioactivity data were converted to the 

standard unit, μM; (3) Compounds with IC50 values ≤10μM 

were classified as active and those with higher values as 

inactive.7 Finally, the five cell lines with more than 50 active 

and 50 inactive molecules were retained. All datasets 

employed for the models in this research are publicly 

accessible at https://github.com/Gokulakrish13/Machine-

Learning-Classifiers-for-Predicting-Active Molecules-

Against-Lung-Cancer-Cells.git. In the current investigation, 

to characterize the drug-like information of the molecules, 

53 distinct type ADME descriptors were generated using 

Qikprop module of the Schrödinger suite.  

 

Data Pre-processing: The pre-processing steps collectively 

aimed to enhance the quality of the dataset, improve model 

performance and facilitate more reliable predictions in 

subsequent machine learning tasks.16 During the data pre-

processing phase, the dataset was loaded and subjected to 

basic exploratory data analysis to comprehend its structure 

and characteristics. Numerical features were then 

normalized and standardized using the StandardScaler and 

MinMaxScaler respectively, to ensure uniformity and 

mitigate the impact of varying scales on model 

performance.20  

 

Following this, the categorical features were encoded using 

LabelEncoder to convert them into numerical 

representations suitable for modelling. The outliers were 

detected using the Z-score method with a threshold of 3 and 

those identified were subsequently removed from the 

dataset. A high number of outliers in certain columns 

suggested these features might be irrelevant for the analysis. 

 

A correlation analysis was performed by generating a 

correlation matrix to investigate the relationships among 

features. This analysis revealed several features with low or 

negligible correlation with the target variable, suggesting 

they were likely irrelevant for modelling purposes. For 

instance, some features displayed minimal correlation 

coefficients, further supporting the decision to exclude them 

from further analysis. Features lacking clear trends or 

patterns were identified. These insights, combined with the 

domain knowledge, guided the selection of only the most 

pertinent features for the final dataset. Additionally, the 

Synthetic Minority Oversampling Technique (SMOTE) was 

applied to address class imbalances in the dataset.6 Finally, 

feature selection techniques, including recursive feature 

elimination with cross-validation (RFECV), were utilized to 

meticulously identify and retain the most pertinent features 

for the modeling process.4 

 

Machine learning model construction: A systematic 

approach was followed in constructing machine learning 

algorithms to ensure the development of robust models that 

accurately predict the target variable. Five conventional 

machine learning algorithms including Logistic Regression, 

Naïve Bayes, Random Forest, K-Nearest Neighbor and 

Support Vector Machine, were employed for the 

development of classification models. Each algorithm was 

implemented using Scikit-Learn's library, with appropriate 

hyperparameters chosen either through manual tuning or 

automated techniques like grid search and randomized 

search.13 Finally, the dataset was partitioned into training 

and testing sets using the train_test_split function to 

streamline the process of model development and 

evaluation.  

 

Performance Evaluation of Models: Various performance 

metrics, including accuracy, precision, recall, F1-score and 

area under the ROC curve (AUC), were utilized to assess the 

effectiveness of the models. To ensure robust evaluation, k-

fold cross-validation was employed, which helped to gauge 

the models' generalization performance and mitigate the risk 

of overfitting.21 The best-performing model was selected 

based on a comprehensive analysis of these performance 

metrics, with additional consideration given to its 

interpretability and suitability for the specific task of 

predicting antiproliferative activity against lung cancer cell 

lines. These meticulous steps collectively contributed to the 

development of robust and reliable machine learning 

algorithms capable of making accurate and insightful 

predictions on the dataset. 

 

Results and Discussion 
Dataset analysis and Pre-processing: In the data pre-

processing phase, the dataset was subjected to several key 

transformations to ensure its suitability for subsequent 

analysis and modelling. Initially, the dataset underwent 

thorough exploration, including an examination of column 

names and statistical summaries to gain insights into 

structure and characteristics. The `missingno` library was 

used to identify and visualize the null values present in the 

dataset. This analysis showcased that no missing values were 

found which ensured the integrity of the dataset. Then by 

utilizing the `StandardScalar` from the scikit-learn library, 

we performed standardization, which transformed the data 

to have a mean of 0 and a standard deviation of 1, making it 

suitable for algorithms sensitive to scale.  
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Further, `LabelEncoder` from the scikit-learn was used for 

converting categorical labels into numerical format that 

facilitate their integration into machine learning models. 

Accordingly, the labels 'Active' and 'Inactive' were 

represented numerically as [0, 1]. Similarly, the cell line data 

were encoded as [1, 2, 3, 4, 0] for 'HCC-78', 'NCI-H322', 

'NCI-H358', 'NCI-H522' and 'CaLu-06' respectively.  

 

To avoid undue impact on the model's performance, outliers 

were detected by applying the z-score method, setting the 

threshold at 3. This widely recognized statistical technique 

corresponds to a confidence interval of approximately 

99.7%. Data points that occur beyond three standard 

deviations from the mean, are considered statistically rare 

and therefore, potential outliers.1 In the present study, the Z-

score method identified 41 descriptors with outliers, which 

were then imputed with median values. Finally, the pre-

processed data was saved for further analysis and model 

development, ensuring the integrity and reproducibility of 

subsequent efforts. 

 

Selection of important features for model construction: 

Feature selection is the process of identifying and selecting 

the most informative features from a dataset, aiming to 

improve model performance by reducing dimensionality and 

eliminating irrelevant or redundant features. The present 

study employed correlation analysis and RFECV to identify 

the subset of features that contribute most to predictive 

accuracy. In the present study, the 51 features were subjected 

to correlation analysis to identify any redundant features by 

examining the correlations between the features using 

heatmap. From figure 1, it can be observed that 12 positively 

correlated features ('Cell_Line', 'mol_MW', 'dipole', 'SASA', 

'volume', 'dip^2/V', 'QPpolrz', 'QPlogPC16', '#ringatoms', 

'#in56', '#nonHatm') are the most relevant for model training 

and evaluation.  

 

Additionally, RFECV was also employed using a Random 

Forest classifier as the base model, which iteratively selects 

the most informative features for machine learning models 

while evaluating performance through cross-validation, 

thereby enhancing model interpretability and generalization. 

The results of RFECV show the same set of optimal features, 

ensuring that the selected features were highly correlated 

with each other. Ultimately, the models were developed 

using these 12 features. 

 

 
Figure 1: Heatmap visualization depicting the interrelationships between the various features  

and the target variable within the dataset 
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(a) 

 

 
(b) 

Figure 2: Comparison of the performance accuracy of various machine learning classifiers  

(a) Training set (b) Test set 

 

Performance evaluation of the developed models: Table 

1 and table 2 showed the performance of the five classifiers 

before and after the feature selection process. The simplest 

technique to evaluate a model’s performance is to measure 

its accuracy. Similarly, figure 2 and figure 3 depicted the 

performance of the different classifiers in distinguishing 

active and inactive drugs before and after the feature 

selection approach. In the present study, the random forest 

classifier with hyperparameters {'max_depth': 13, 

'n_estimators': 78} emerged as the top performer, achieving 

an accuracy of 0.80, a recall of 0.77, a precision of 0.82 and 

an F1-score of 0.79, along with an AUC value of 0.85. This 

indicates its ability to accurately classify both positive and 

negative instances while maintaining a balance between 

recall and precision.  

 

Similarly, logistic regression, using {'C': 6.11, 'penalty': 'l2', 

'solver': 'liblinear'}, displayed lower performance, with 

recall, precision and F1-score all at 0.59 and an AUC of 0.64. 

The KNN algorithm demonstrated notable performance, 

achieving an accuracy of 0.76, precision of 0.78, recall of 

0.73 and an F1-score of 0.76, along with an AUC value of 
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0.84, using the hyperparameters {'metric': 'manhattan', 

'n_neighbors': 21, 'weights': 'distance'}, showcasing its 

ability to effectively classify instances based on their nearest 

neighbors. In contrast, the SVM classifier, with 

hyperparameters {'C': 7, 'kernel': 'rbf', 'gamma': 'scale'}, 

exhibited the lowest performance, with an accuracy of 0.54, 

precision of 0.62, recall of 0.24, F1-score of 0.34 and an 

AUC value of 0.55. Collectively, the evaluation metrics 

highlight that the random forest algorithm surpasses other 

classifiers in predicting drug responses in lung cancer cell 

lines. 

 

 
(a) 

 
(b) 

Figure 3: AUC-ROC curves for various classifiers (a) before feature selection (b) after feature selection 
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Figure 4: Comparative analysis of various machine learning classifiers through the implementation  

of K-Fold cross-validation 

 

Table 1 

Performance metrices before feature selection 

Classification Algorithms Accuracy 

score 

Precision Recall F1-Measures AUC value 

Logistic Regression 0.651 0.66 0.86 0.75 0.65 

Naïve Bayes 0.60 0.69 0.64 0.67 0.62 

Random Forest 0.767 0.815 0.80 0.81 0.84 

K-Nearest Neighbor 0.74 0.78 0.80 0.79 0.79 

Support Vector Machine 0.62 0.62 0.33 0.77 0.65 

 

Table 2 

Performance metrices after feature selection 

Classification Algorithms Accuracy score Precision Recall F1-Measures AUC value 

Logistic Regression 0.65 0.64 0.67 0.65 0.70 

Naïve Bayes 0.55 0.55 0.51 0.53 0.58 

Random Forest 0.83 0.83 0.83 0.83 0.89 

K-Nearest Neighbor 0.80 0.81 0.79 0.82 0.87 

Support Vector Machine 0.75 0.76 0.73 0.75 0.81 

 

Table 3 

K – Fold cross-validation score for different classifiers after feature selection 

Classification Algorithms 5-Fold Cross-Validation 10-Fold Cross-Validation 

Logistic Regression 0.58 0.59 

Naïve Bayes 0.52 0.52 

Random Forest 0.82 0.82 

K-Nearest Neighbor 0.82 0.81 

Support Vector Machine 0.82 0.81 
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Performance evaluation of cross validation: In the realm 

of model evaluation, employing cross-validation techniques 

is crucial for robustly assessing machine learning 

algorithms. In a 5-fold cross-validation, where the data is 

partitioned into five subsets for iterative model training and 

testing, the SVM classifier demonstrated a mean accuracy of 

0.54 ± 0.0226, indicating a moderate performance level. In 

contrast, the KNN classifier exhibited a notably higher mean 

accuracy of 0.78 ± 0.0200, suggesting a strong predictive 

advantage with relatively low variance. Similarly, the Naive 

Bayes classifier achieved a mean accuracy of 0.56 ± 0.0181, 

while the Logistic Regression model and the Random Forest 

classifier attained mean accuracies of 0.57 ± 0.0101 and 0.79 

± 0.0268 respectively (Table 3). 

 

To gain further insights into model performance, a 10-fold 

cross-validation framework was carried out. The results are 

depicted in figure 4. Despite a slight decrease in mean 

accuracy, the SVM classifier maintained competitive 

performance, achieving an accuracy of 0.53 ± 0.0377. 

Notably, the KNN classifier exhibited robustness with a 

consistent mean accuracy of 0.80 ± 0.0168, signifying its 

reliability across diverse data partitions. Meanwhile, the 

Naive Bayes classifier demonstrated a stable mean accuracy 

of 0.56 ± 0.0288, corroborating its reliability in varied cross-

validation scenarios.  

 

The Logistic Regression model displayed a mean accuracy 

of 0.58 ± 0.0310, while the Random Forest classifier 

sustained its effectiveness with a mean accuracy of 0.80 ± 

0.0337. Both methods provide robust performance 

estimates, with 10-fold cross-validation typically offering 

higher accuracy at the expense of increased computational 

cost. Collectively, these findings highlight that the random 

forest consistently exhibited the highest mean accuracies 

across both 5-fold and 10-fold splits, underscoring its 

reliability and stability in classification tasks. 

 

Conclusion 
This study developed five predictive models using machine 

learning techniques to identify novel drug candidates for 

lung cancer treatment, assembling datasets comprising of 

692 active and 1,071 inactive compounds across five 

commonly utilized lung cancer cell lines for in vitro 

antiproliferative assessments. Among the models evaluated: 

Logistic Regression, Naïve Bayes, Random Forest, K-

Nearest Neighbor and Support Vector Machine, the Random 

Forest algorithm performed the best, achieving an accuracy 

of 0.80 and an AUC of 0.85, effectively distinguishing 

between active and inactive compounds. These findings 

indicate that the Random Forest model can guide future drug 

discovery efforts and personalized treatment strategies in 

lung cancer management.  

 

Looking ahead, an online platform and local version of 

software based on these well-established models could be 

developed to significantly contribute to research aimed at 

designing and discovering new anti-lung cancer agents. As 

the database of compound toxicity data for lung cancer and 

normal cell lines expands, we will incorporate additional 

predictive models in future studies. 
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