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Abstract

Lung cancer remains a significant global health
concern, posing a substantial burden on both patients
and healthcare systems. As a result, there is an urgent
need for innovative therapeutic interventions to
manage lung cancer more effectively. In this study, we
developed classification models using machine
learning algorithms to predict drug responses in lung
cancer cell lines. A diverse dataset was retrieved,
consisting of 692 active and 1,071 inactive compounds
tested against five major lung cancer cell lines: CalLu-
06, HCC-78, NCI-H322, NCI-H358 and NCI-H522.
Drug-like properties of these compounds were
generated and employed as descriptors for model
development.

The proposed method utilised techniques such as z-
score, correlation analysis, recursive feature
elimination with cross-validation and SMOTE to pre-
process the data and identify key features. Further,
hyperparameter optimisation was conducted using
Optuna to fine-tune model parameters and enhance
performance. The results revealed that Random Forest
reached an accuracy of 0.80 and an AUC of 0.85. This
positions it as the best model, with significant
implications for drug discovery and personalised lung
cancer therapies. The implementation materials
alongside python code are accessible freely at
https://github.com/Gokulakrish13/Machine-Learning-
Classifiers-for-Predicting-Active  Molecules-Against-
Lung-Cancer-Cells.qgit.

Keywords: Lung cancer, Drug Response, GDSC, Cell lines,
Machine Learning Models.

Introduction

Lung cancer (LC), characterised by a poor overall 5-year
survival rate, is one of the leading causes of cancer-related
deaths globally.® Despite extensive efforts to develop
enhanced therapeutic strategies including chemotherapies,
targeted therapies and immunotherapies, only modest
survival rates and clinical outcomes have been observed."°
Moreover, the drug resistance associated with existing
molecules further worsens the situation, clearly highlighting
the necessity for novel therapeutics. Interestingly, lung
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cancer treatment could be significantly improved by
exploring new and innovative sources of bioactive
compounds. These naturally occurring molecules have the
potential to act as anti-cancer agents, offering a promising
avenue for more effective therapies.

In recent years, phenotypic-based drug screening has
garnered significant attention due to the substantial number
of drugs identified and approved through this approach.
However, its application is often associated with
disadvantages such as high costs, low throughputs and
challenges in optimizing emerging hit compounds.’® To
address these limitations, machine learning (ML) and deep
learning models are increasingly used to exploit phenotypic-
based data, often in conjunction with molecular structures or
multiomics knowledge. This integration enhances the
accuracy of modern translational precision medicine.*? For
instance, Wu et al*® developed a user-friendly web server
called DeepCancerMap to accelerate the discovery of
anticancer drugs.

In another study, Qin et al'> created an MLP-based
regression model to predict the bioactivity of compounds
targeting the Era protein, demonstrating efficacy with a loss
value of 0.0146, highlighting its potential for screening
active compounds for breast cancer management. Similarly,
Bonanni et al? constructed several machine learning models
using compounds with highly consistent cell-based
antiproliferative assay data to predict ligand activity for the
PC-3 and DU-145 prostate cancer cell lines. Additionally,
He et al” developed predictive models using fingerprints and
molecular descriptors for 13 different breast cancer cell
lines, showcasing the potential of these techniques in
enhancing cancer therapy.

Although the reported computational models have provided
valuable insights into the discovery of anticancer agents,
machine learning models employing drug-like descriptors
remain elusive. Note that drug-like properties are crucial in
the development of machine learning models for drug
discovery and response prediction.® Specifically, studies
have shown that incorporating ADME (Absorption,
Distribution, Metabolism and Excretion) data into predictive
models can significantly improve the accuracy of drug
response predictions.® Addressing this gap, the present study
focuses on extensively training machine learning models
using data from the Genomics of Drug Sensitivity in Cancer
(GDSC) database. This approach aims to predict the
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antiproliferative cellular activity of compounds specifically
against aggressive lung cancer cell lines including CalLu-06,
HCC-78, NCI-H322, NCI-H358 and NCI-H522.

By leveraging the extensive genomic and pharmacological
data available in GDSC, the study seeks to enhance the
precision and efficacy of drug response predictions,
ultimately contributing to the development of more effective
therapeutic strategies for lung cancer.

Material and Methods

Dataset preparation and descriptor generation: Initially,
the 1Cso values for anti-cancer drugs against five lung cancer
cell lines: CalLu-06, HCC-78, NCI-H322, NCI-H358 and
NCI-H522, were obtained from the GDSC database.®
Consequently, we processed the acquired data using the
following steps: (1) Only compounds with reported 1Cso
values were kept and those lacking bioactivity data were
discarded; (2) The bioactivity data were converted to the
standard unit, uM; (3) Compounds with ICsg values <10uM
were classified as active and those with higher values as
inactive.” Finally, the five cell lines with more than 50 active
and 50 inactive molecules were retained. All datasets
employed for the models in this research are publicly
accessible at https://github.com/Gokulakrish13/Machine-
Learning-Classifiers-for-Predicting-Active Molecules-
Against-Lung-Cancer-Cells.git. In the current investigation,
to characterize the drug-like information of the molecules,
53 distinct type ADME descriptors were generated using
Qikprop module of the Schrédinger suite.

Data Pre-processing: The pre-processing steps collectively
aimed to enhance the quality of the dataset, improve model
performance and facilitate more reliable predictions in
subsequent machine learning tasks.'® During the data pre-
processing phase, the dataset was loaded and subjected to
basic exploratory data analysis to comprehend its structure
and characteristics. Numerical features were then
normalized and standardized using the StandardScaler and
MinMaxScaler respectively, to ensure uniformity and
mitigate the impact of varying scales on model
performance.?

Following this, the categorical features were encoded using
LabelEncoder to convert them into  numerical
representations suitable for modelling. The outliers were
detected using the Z-score method with a threshold of 3 and
those identified were subsequently removed from the
dataset. A high number of outliers in certain columns
suggested these features might be irrelevant for the analysis.

A correlation analysis was performed by generating a
correlation matrix to investigate the relationships among
features. This analysis revealed several features with low or
negligible correlation with the target variable, suggesting
they were likely irrelevant for modelling purposes. For
instance, some features displayed minimal correlation
coefficients, further supporting the decision to exclude them
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from further analysis. Features lacking clear trends or
patterns were identified. These insights, combined with the
domain knowledge, guided the selection of only the most
pertinent features for the final dataset. Additionally, the
Synthetic Minority Oversampling Technique (SMOTE) was
applied to address class imbalances in the dataset.® Finally,
feature selection techniques, including recursive feature
elimination with cross-validation (RFECV), were utilized to
meticulously identify and retain the most pertinent features
for the modeling process.*

Machine learning model construction: A systematic
approach was followed in constructing machine learning
algorithms to ensure the development of robust models that
accurately predict the target variable. Five conventional
machine learning algorithms including Logistic Regression,
Naive Bayes, Random Forest, K-Nearest Neighbor and
Support Vector Machine, were employed for the
development of classification models. Each algorithm was
implemented using Scikit-Learn's library, with appropriate
hyperparameters chosen either through manual tuning or
automated techniques like grid search and randomized
search.’® Finally, the dataset was partitioned into training
and testing sets using the train_test split function to
streamline the process of model development and
evaluation.

Performance Evaluation of Models: Various performance
metrics, including accuracy, precision, recall, F1-score and
area under the ROC curve (AUC), were utilized to assess the
effectiveness of the models. To ensure robust evaluation, k-
fold cross-validation was employed, which helped to gauge
the models’ generalization performance and mitigate the risk
of overfitting.?! The best-performing model was selected
based on a comprehensive analysis of these performance
metrics, with additional consideration given to its
interpretability and suitability for the specific task of
predicting antiproliferative activity against lung cancer cell
lines. These meticulous steps collectively contributed to the
development of robust and reliable machine learning
algorithms capable of making accurate and insightful
predictions on the dataset.

Results and Discussion

Dataset analysis and Pre-processing: In the data pre-
processing phase, the dataset was subjected to several key
transformations to ensure its suitability for subsequent
analysis and modelling. Initially, the dataset underwent
thorough exploration, including an examination of column
names and statistical summaries to gain insights into
structure and characteristics. The “missingno” library was
used to identify and visualize the null values present in the
dataset. This analysis showcased that no missing values were
found which ensured the integrity of the dataset. Then by
utilizing the “StandardScalar”™ from the scikit-learn library,
we performed standardization, which transformed the data
to have a mean of 0 and a standard deviation of 1, making it
suitable for algorithms sensitive to scale.
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Further, “LabelEncoder™ from the scikit-learn was used for
converting categorical labels into numerical format that
facilitate their integration into machine learning models.
Accordingly, the labels ‘Active’ and ‘Inactive’ were
represented numerically as [0, 1]. Similarly, the cell line data
were encoded as [1, 2, 3, 4, 0] for 'HCC-78', 'NCI-H322',
'NCI-H358', 'NCI-H522" and 'Calu-06' respectively.

To avoid undue impact on the model's performance, outliers
were detected by applying the z-score method, setting the
threshold at 3. This widely recognized statistical technique
corresponds to a confidence interval of approximately
99.7%. Data points that occur beyond three standard
deviations from the mean, are considered statistically rare
and therefore, potential outliers.! In the present study, the Z-
score method identified 41 descriptors with outliers, which
were then imputed with median values. Finally, the pre-
processed data was saved for further analysis and model
development, ensuring the integrity and reproducibility of
subsequent efforts.

Selection of important features for model construction:
Feature selection is the process of identifying and selecting
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the most informative features from a dataset, aiming to
improve model performance by reducing dimensionality and
eliminating irrelevant or redundant features. The present
study employed correlation analysis and RFECV to identify
the subset of features that contribute most to predictive
accuracy. In the present study, the 51 features were subjected
to correlation analysis to identify any redundant features by
examining the correlations between the features using
heatmap. From figure 1, it can be observed that 12 positively
correlated features ('Cell_Line', 'mol_MW/, 'dipole’, 'SASA',
‘volume', 'dip"2/V', '‘QPpolrz’, '‘QPlogPC16', '#ringatoms’,
'#in56', ‘#nonHatm') are the most relevant for model training
and evaluation.

Additionally, RFECV was also employed using a Random
Forest classifier as the base model, which iteratively selects
the most informative features for machine learning models
while evaluating performance through cross-validation,
thereby enhancing model interpretability and generalization.
The results of RFECV show the same set of optimal features,
ensuring that the selected features were highly correlated
with each other. Ultimately, the models were developed
using these 12 features.
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Figure 1: Heatmap visualization depicting the interrelationships between the various features
and the target variable within the dataset
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Performance accuracy of various machine learning classifiers
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Figure 2: Comparison of the performance accuracy of various machine learning classifiers
(a) Training set (b) Test set

Performance evaluation of the developed models: Table
1 and table 2 showed the performance of the five classifiers
before and after the feature selection process. The simplest
technique to evaluate a model’s performance is to measure
its accuracy. Similarly, figure 2 and figure 3 depicted the
performance of the different classifiers in distinguishing
active and inactive drugs before and after the feature
selection approach. In the present study, the random forest
classifier with  hyperparameters {'max_depth 13,
'n_estimators": 78} emerged as the top performer, achieving
an accuracy of 0.80, a recall of 0.77, a precision of 0.82 and

https://doi.org/10.25303/2011rjbt068075

an F1-score of 0.79, along with an AUC value of 0.85. This
indicates its ability to accurately classify both positive and
negative instances while maintaining a balance between
recall and precision.

Similarly, logistic regression, using {'C": 6.11, ‘penalty": '12',
'solver": 'liblinear'}, displayed lower performance, with
recall, precision and F1-score all at 0.59 and an AUC of 0.64.
The KNN algorithm demonstrated notable performance,
achieving an accuracy of 0.76, precision of 0.78, recall of
0.73 and an F1-score of 0.76, along with an AUC value of
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0.84, using the hyperparameters {'metric’. 'manhattan’,
'n_neighbors: 21, ‘weights': 'distance}, showcasing its
ability to effectively classify instances based on their nearest
neighbors. In contrast, the SVM classifier, with
hyperparameters {'C": 7, 'kernel: 'rbf', 'gamma’" 'scale},
exhibited the lowest performance, with an accuracy of 0.54,

Vol. 20 (11) November (2025)
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precision of 0.62, recall of 0.24, Fl-score of 0.34 and an
AUC value of 0.55. Collectively, the evaluation metrics
highlight that the random forest algorithm surpasses other
classifiers in predicting drug responses in lung cancer cell
lines.

AUC-ROC curves for various classifiers prior to the implementation of feature selection
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Figure 3: AUC-ROC curves for various classifiers (a) before feature selection (b) after feature selection

https://doi.org/10.25303/2011rjbt068075

72



Research Journal of Biotechnology s Vol. 20 (11) November (2025)
Res. J. Biotech.

0.9

~

(o)}

(&)

SN

w

N

[y

0.8
0.
0.
0.
0.
0.
0.
0.

K-Nearest Neighbor

o

Logistic Regression Naive Bayes Random Forest Support Vector

Machine

m 5-Fold Cross-Validation m 10-Fold Cross-Validation

Figure 4: Comparative analysis of various machine learning classifiers through the implementation
of K-Fold cross-validation

Table 1

Performance metrices before feature selection

Classification Algorithms Accuracy Precision Recall F1-Measures AUC value
score
Logistic Regression 0.651 0.66 0.86 0.75 0.65
Naive Bayes 0.60 0.69 0.64 0.67 0.62
Random Forest 0.767 0.815 0.80 0.81 0.84
K-Nearest Neighbor 0.74 0.78 0.80 0.79 0.79
Support Vector Machine 0.62 0.62 0.33 0.77 0.65
Table 2
Performance metrices after feature selection
Classification Algorithms | Accuracy score Precision Recall F1-Measures AUC value
Logistic Regression 0.65 0.64 0.67 0.65 0.70
Naive Bayes 0.55 0.55 0.51 0.53 0.58
Random Forest 0.83 0.83 0.83 0.83 0.89
K-Nearest Neighbor 0.80 0.81 0.79 0.82 0.87
Support Vector Machine 0.75 0.76 0.73 0.75 0.81
Table 3

K — Fold cross-validation score for different classifiers after feature selection

Classification Algorithms 5-Fold Cross-Validation 10-Fold Cross-Validation
Logistic Regression 0.58 0.59
Naive Bayes 0.52 0.52
Random Forest 0.82 0.82
K-Nearest Neighbor 0.82 0.81
Support Vector Machine 0.82 0.81
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Performance evaluation of cross validation: In the realm
of model evaluation, employing cross-validation techniques
is crucial for robustly assessing machine learning
algorithms. In a 5-fold cross-validation, where the data is
partitioned into five subsets for iterative model training and
testing, the SVM classifier demonstrated a mean accuracy of
0.54 * 0.0226, indicating a moderate performance level. In
contrast, the KNN classifier exhibited a notably higher mean
accuracy of 0.78 + 0.0200, suggesting a strong predictive
advantage with relatively low variance. Similarly, the Naive
Bayes classifier achieved a mean accuracy of 0.56 + 0.0181,
while the Logistic Regression model and the Random Forest
classifier attained mean accuracies of 0.57 £ 0.0101 and 0.79
+ 0.0268 respectively (Table 3).

To gain further insights into model performance, a 10-fold
cross-validation framework was carried out. The results are
depicted in figure 4. Despite a slight decrease in mean
accuracy, the SVM classifier maintained competitive
performance, achieving an accuracy of 0.53 + 0.0377.
Notably, the KNN classifier exhibited robustness with a
consistent mean accuracy of 0.80 £ 0.0168, signifying its
reliability across diverse data partitions. Meanwhile, the
Naive Bayes classifier demonstrated a stable mean accuracy
of 0.56 + 0.0288, corroborating its reliability in varied cross-
validation scenarios.

The Logistic Regression model displayed a mean accuracy
of 0.58 = 0.0310, while the Random Forest classifier
sustained its effectiveness with a mean accuracy of 0.80 +
0.0337. Both methods provide robust performance
estimates, with 10-fold cross-validation typically offering
higher accuracy at the expense of increased computational
cost. Collectively, these findings highlight that the random
forest consistently exhibited the highest mean accuracies
across both 5-fold and 10-fold splits, underscoring its
reliability and stability in classification tasks.

Conclusion

This study developed five predictive models using machine
learning techniques to identify novel drug candidates for
lung cancer treatment, assembling datasets comprising of
692 active and 1,071 inactive compounds across five
commonly utilized lung cancer cell lines for in vitro
antiproliferative assessments. Among the models evaluated:
Logistic Regression, Naive Bayes, Random Forest, K-
Nearest Neighbor and Support Vector Machine, the Random
Forest algorithm performed the best, achieving an accuracy
of 0.80 and an AUC of 0.85, effectively distinguishing
between active and inactive compounds. These findings
indicate that the Random Forest model can guide future drug
discovery efforts and personalized treatment strategies in
lung cancer management.

Looking ahead, an online platform and local version of
software based on these well-established models could be
developed to significantly contribute to research aimed at
designing and discovering new anti-lung cancer agents. As
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the database of compound toxicity data for lung cancer and
normal cell lines expands, we will incorporate additional
predictive models in future studies.
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